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TGPT Temporal Gradient-Domain Path Tracing
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1. Introduction

Realistic image synthesis – computationally producing realistic-looking
virtual photographs of a virtual environment – is a core subject in computer
graphics. Its products are consumed daily by most people in the form of
movies and advertising (Figure 1.1). This thesis deals with the creation of
virtual photographs by computational simulation of light. More specifically,
this thesis describes novel synthesis methods that require less computation,
which can potentially translate into cheaper production costs, improved
image quality, and smaller environmental footprint.

Realistic image synthesis can be roughly divided into two categories:
real-time rendering and offline rendering. Real-time methods are used
when images need to be shown to the user quickly – typically in under 17
milliseconds – as a response to user input in applications such as games
and virtual reality. To achieve such a short rendering time, real-time
methods often resort to case-specific approximations and precomputation
of content with offline methods. As such, the methods presented in this
thesis do not target real-time due to the strict time constraints, but this
may eventually change with the development of more computationally
capable hardware.

Figure 1.1. A virtual photograph simulated with Path Tracing [38]. From short
film Spring. © Blender Foundation | cloud.blender.org/spring. Licensed under
CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
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Introduction

When there is no requirement to react to user input in real-time, then
more accurate and general, but also slower, rendering methods can be used.
In movie and advertisement companies the rendering times of a single
frame may range from hours to hundreds or even thousands of processor
hours per frame, depending on the company. Feature films may consist
of hundreds of thousands of frames, and typically require the capacity of
expensive supercomputers to render. This uses a lot of electricity, which
directly translates into high production and environmental cost. A more
efficient rendering method – one that achieves equivalent image quality
in a shorter time – directly translates into savings in production and
environmental costs. Research on more efficient methods for realistic
image synthesis, which this thesis is about, is thus not only a pursuit of
scientific curiosity but also of strong practical interest.

1.1 Light Simulation

A higher computation budget enables a more realistic simulation of light by
algorithms based on tracking paths of photons (or light rays) by a process
called ray tracing. In a very simplified view, virtual light sources emit
virtual light particles (photons) that interact with the virtual environment
called the scene. Some of these photons end up into the sensor of a virtual
camera, and counting the number of photons in each cell (pixel) gives rise
to a virtual photograph.

The light simulation is described by the rendering equation [38] whose
solution [70] simply states that an image is formed by summing up all light
that directly reaches the sensor from the directly visible light sources, light
that reaches the sensor after one surface interaction (direct light), and light
that reaches the sensor after two, three, and so on, surface interactions
called the first, second, and so on, order indirect light. See Figure 1.2.

Sources Direct 1st Indirect 10th Indirect

+ + + ·· · + + ·· ·

Figure 1.2. Decomposition of lighting. Full lighting is attained by summing light from
directly visible light sources, direct light, and all orders of indirect light.

The amount of light arriving each pixel is thus defined by the sum, or
integral, of the amount of light arriving through all possible paths that
light can take. Each pixel has a separate – although highly similar –
integral, whose value is typically solved by Monte Carlo simulation, i.e.,
random sampling potential light paths and evaluating the amount of light
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arriving through each one of them. The Monte Carlo solution provides
each pixel with a noisy estimate of the final color, and the amount of noise
diminishes as more samples are taken.

The difference between most path-sampling-based Monte Carlo solu-
tions of the rendering equation, such as classic Path Tracing [38] (PT),
Bidirectional Path Tracing [44, 69, 70] (BDPT) and Metropolis Light Trans-
port [71, 40] (MLT) can be reduced to the differences in the path samplers.
A realized path distribution that better matches the real distribution of
light generally results in less noise, and thus provides equivalent quality
results with less computing time and power.

Each decrease of the remaining noise level to ten percent by taking more
samples requires one hundred times more rendering time. Even using the
best available sampler and the maximum available time budget may not
always be enough. The noise then needs to be removed by other means.
Such denoising methods typically remove the noise in the image by context-
aware smoothing, although also other methods such as dimensionality
reduction by truncated SVD [76] exist. Denoising methods are essentially
more advanced methods of reconstruction, constructing the final image
from the sampled data. These denoising methods have recently proven
extremely powerful, reducing rendering time by up to orders of magnitude.

Traditional path samplers are not the only ways to solve the rendering
equation. Other common solutions include for example photon density
estimation methods [35, 36, 23, 21, 43] and the finite element method
Radiosity [18] and its variants, e.g. [32, 4, 46]. The radiosity methods
are not as common anymore due to challenges in scaling to modern-day
geometric and material complexity. Photon density estimation methods
may need longer rendering times time than traditional path sampling
methods to avoid loss of detail, but they often solve for example caustics
(see Figure 1.3) much faster. They are still commonly used today, especially
due to the unification of the photon density estimation and traditional path
sampling frameworks [14, 24].

Figure 1.3. Photograph of a glass with caustics. The glass refracts light into complex
caustic patterns on the table. This concentration of light due to refraction is
typically very hard to find for path-sampling-based methods.
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1.2 Gradient-Domain Rendering

Lehtinen et al. [45] recently published a novel method for solving the
rendering equation. They describe a gradient-domain modification of the
Metropolis Light Transport [71] algorithm: Instead of only sampling the
colors of the image pixels by traditional path sampling, they also sample
for the image gradients, the finite differences between neighboring pixels
in all directions. They then recover the final pixel colors by integrating the
sampled image gradients by solving a screened Poisson equation.

This method exploits the typical similarity of the light paths which
affect close-by pixels: Often a path that carries light to one pixel only
needs to have its vertex positions moved a little to cast light into an
adjacent pixel. While in traditional Monte Carlo rendering sampling such
highly correlated pairs of paths would often be undesirable, gradient-
domain rendering turns this into an advantage: The color differences of
neighboring pixels are evaluated by subtraction, and subtracting correlated
contributions of similar paths results in noise cancellation for the difference
estimates. This often improves the quality of the sampled image gradients
considerably and often leads to improved result images in equal time.

The final image is acquired from the samples by solving the screened
Poisson equation which glues the color and gradient samples together.
More precisely, the equation states that the final image’s pixel colors
should equal the traditional color estimates provided by the standard color
samples, and the finite differences of the final image should equal the
finite differences provided by the gradient samples. Solving this system of
equations in the least-squares sense (L2) provides an unbiased estimate
for the final image, while a least absolute deviations (L1) solution often
produces visually more pleasing results while still converging to the exact
solution. The novel gradient-domain method typically results in a sig-
nificant improvement of image quality in equal time, or shorter time to
equivalent quality, compared to the original primal-domain Metropolis
Light Transport algorithm.

While providing good results, one may wonder why the authors decided
to implement the novel gradient-domain renderer on top of the complex
Metropolis Light Transport [71] algorithm instead of the much simpler
Path Tracing [38] algorithm. The motivation, however, was solid: The
Metropolis algorithm naturally concentrates samples to areas of high con-
tribution, and as the gradients of an image contain the same information
as the standard colors but are much more sparse, the gradient-domain
sampler should be more efficient in gathering the information required for
reconstructing the image. This argument does not, however, indicate nor
rule out potential benefits of gradient-domain variants of classical Monte
Carlo algorithms such as Path Tracing.
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1.3 Research Gap

The intersection of gradient-domain rendering and classical Monte Carlo
methods had not been covered by existing scientific literature before the
publications in this thesis (see Figure 1.4 for an illustration). Earlier
research in gradient-domain rendering [45, 48] did not predict nor oppose
potential benefits from this intersection, which makes the research topic
high-risk. The success of gradient-domain rendering in the context of
Markov Chain Monte Carlo rendering, however, also suggests the possibil-
ity for a potentially high reward.

MCMC MC

Gradient G-MLT

Uncharted Space

Primal MLT PT

Figure 1.4. Research Gap. The intersection of gradient-domain rendering (bottom row)
and Markov Chain Monte Carlo (left column) results in large benefits in the
Gradient-Domain Metropolis Light Transport rendering algorithm (bottom
left). What kind of benefits await in the uncharted intersection of gradient-
domain rendering and standard Monte Carlo sampling (bottom right)?

1.4 Objectives and Scope

Rendering high-quality images is a very computationally intensive task,
and movies may consist of hundreds of thousands of such images. Faster
rendering methods are necessary to bring down the production and envi-
ronmental costs of rendering animations and still images.

Many rendering companies – especially those specializing in animation –
tend to use simpler Monte Carlo methods like Path Tracing and Bidirec-
tional Path Tracing over complex methods like Metropolis Light Transport
(e.g. [12, 11, 13, 9]). The full Metropolis Light Transport algorithm is
notoriously hard to implement1 and has a problem with predictability:

1Kelemen et al. [40] present a significantly simpler variant of Metropolis Light
Transport, but it is often less effective.
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different seemingly converged renderings of the same scene may feature
the same areas of the image with very different brightnesses [45].

While unpredictability is undesirable in general, in animations this also
results in flickering, which makes Metropolis Light Transport relatively
unsuited for animation [67, 6]. Gradient-Domain Metropolis Light Trans-
port often produces improved results in equal time but inherits these
issues. Extending the scope of gradient-domain rendering to standard
Monte Carlo in the form of Path Tracing and Bidirectional Path Tracing
could result in methods that are more viable for industrial use, but special
care should be given to animations to avoid potential flickering issues
like that of Metropolis Light Transport. This establishes the three first
research objectives:

Objective 1: Path Tracing is the de facto standard realistic image
synthesis method in the industry [73]. Transform gradient-domain
rendering from Markov Chain Monte Carlo to standard Monte Carlo
by formulating and implementing a gradient-domain adaptation of
Path Tracing. If path tracing in the gradient-domain turns out to be
beneficial, the reason should be well studied.

Solution: Publication PI derives the Gradient-Domain Path Tracing
algorithm and provides a frequency-domain analysis that explains the
origins of its improved efficiency compared to standard Path Tracing.

Objective 2: Bidirectional Path Tracing is also sometimes used in
production rendering (e.g. [12, 11]). Design and implement a gradient-
domain adaptation of Bidirectional Path Tracing. This would also work
as an example of how to extend more complex rendering methods to
gradient-domain.

Solution: Publication PII presents the Gradient-Domain Bidirectional
Path Tracing rendering method. It is often more efficient than both
Bidirectional Path Tracing and Gradient-Domain Path Tracing.

Objective 3: Address potential animation-related issues, e.g. flicker-
ing, in gradient-domain rendering.

Solution: Publication PIII introduces the Temporal Gradient-Domain
Path Tracing algorithm which extends gradient sampling and recon-
struction to the time dimension. Reconstructing multiple frames at once
this way removes most of the high-frequency temporal noise (flickering).

The industrial renderings with Path Tracing and Bidirectional Path Trac-
ing are, in increasing numbers, starting to feature denoising – improved
reconstructions from the same samples – often with extremely good results.
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Even though the results of Gradient-Domain Path Tracing are often signif-
icantly better than standard Path Tracing, denoised Path Tracing results
are often even better. If a modern reconstruction method can improve
primal-domain rendering so much, how much could a modern reconstruc-
tion method improve gradient-domain rendering? Is gradient sampling
still beneficial in the context of modern reconstruction? This sets the fourth
and last research objective for this thesis:

Objective 4: Develop a new, more capable reconstruction method for
gradient-domain rendering that features machinery similar to modern-
day denoisers. Is gradient sampling still beneficial?

Solution: Publication PIV describes a novel machine-learning-based
reconstruction method for gradient-domain rendering. With the new
reconstruction method Gradient-Domain Path Tracing often reaches
faster time to a given quality than when Path Tracing is joined with
similar modern-day denoisers. Much of the improvement, e.g. the im-
proved quality of shadows, follows directly from the gradients. Gradient
sampling is still often beneficial.

In summary, the publications in this thesis extend the field of realis-
tic image synthesis by studying the previously uncharted intersection of
gradient-domain rendering and Monte Carlo image synthesis. Publica-
tion PI extends standard Monte Carlo Path Tracing to gradient-domain
and explains why it is beneficial also in this context. Publication PII ex-
tends another Monte Carlo rendering method, Bidirectional Path Tracing,
to gradient-domain. Publication PIII extends gradient sampling to the
time-domain to better handle animations. Publication PIV replaces the
old screened Poisson reconstruction with a much more powerful method
based on machine learning and shows that gradients are still beneficial
in the context of modern denoising. The new reconstruction method often
produces higher quality results than primal-domain rendering followed
with state of the art denoising. Figure 1.5 illustrates these relations.

1.5 Research Process

The research process used in the publications in this thesis follows the
standard practices of the field.

In the scientific process, ideas need to be backed up with evaluation. In
the context of realistic image synthesis, this means that the novel ideas
need to be implemented as rendering algorithms, and their performance
and properties need to be analyzed and evaluated.

Once the ideas have been implemented, the implementations need to be
validated and potential bugs need to be fixed. In practice, this starts by
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PII

PIII

Lehtinen et al. [45]

MCMC MC

PI

PIV

Sampling

Animation

Reconstruction

Monte Carlo

Figure 1.5. Relations of the publications. Publication PI extends gradient-domain
rendering from Markov Chain Monte Carlo to standard Monte Carlo. Pub-
lications PII-PIV extend it in three orthogonal directions: PII introduces a
bidirectional sampler, PIII improves the handling of animations, and PIV
improves the reconstruction.

rendering high-quality ground truth images for a set of test scenes over a
long period of time, often with a supercomputer. The images produced by
the new implementation need to be compared to the ground truth images
to catch potential systematic errors that are not explained by sampling
noise. If the results do not show the expected improvement or show other
surprising findings, the root causes need to be identified.

Once the method is considered ready, its performance needs to be ana-
lyzed and evaluated. A representative set of publicly available scenes are
rendered with a wide range of rendering times to map the behavior of the
new method. This examination is repeated for the relevant comparison
methods in the scientific literature, with the same sequence of rendering
times to facilitate a fair equal-time comparison.

The resulting images are analyzed and compared by objective numeric
metrics to better understand the performance differences between the
methods in different scenarios. Typical error metrics such as MSE and
RelMSE [60] do not fully capture the human perception, and the anal-
ysis is followed by an additional visual examination to gain qualitative
understanding of the properties of the novel method – its strengths and
shortcomings. This approach both maps the area of applicability of the new
method and paves the way to new research that might address potential
shortcomings. Finally, the results of the research are documented and
published in the form of a scientific article after a peer review.
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1.6 Summary

The objective of this thesis is to develop new Monte Carlo rendering meth-
ods that work in the gradient-domain. The methods are based on path
sampling which means that they sample random paths that connect lights
to the sensor and evaluate their contributions. The methods work in the
gradient-domain which means that they directly evaluate image gradients,
i.e., color differences between adjacent pixels, and combine the sampled
colors and gradients in a reconstruction step.

The next chapter provides a brief introduction to the most important
topics for understanding the included publications. Chapter 3 summarizes
their most important results, and Chapter 4 discusses their significance.
Many researchers have since continued the work on Monte Carlo gradient-
domain rendering, and these advances are summarized in Section 4.2.
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2. Theoretical Foundation

This chapter contains a brief introduction to the most important topics for
understanding the theoretical context of this thesis. The treatment in this
chapter is brief and should be understood more as a refresher.

The reader is referred to the dissertation of Eric Veach [68] and the book
by Pharr et al. [56] for excellent introductions to realistic image synthesis
and light transport, the book by Goodfellow et al. [17] for an introduction
to machine learning and neural networks, and O’Shea and Nash [53] for
an excellent introduction to convolutional neural networks.

2.1 Geometrical Optics

Realistic image synthesis methods produce virtual photographs by simu-
lating light. Light is electromagnetic radiation, carried by photons, and the
human visual system is typically sensitive to wavelengths from approxi-
mately 380 nm (violet) to 740 nm (red) [63]. The behavior of photons is very
accurately described by quantum mechanics, but this level of precision
is rarely needed in practical applications of realistic image synthesis. A
model based on geometrical optics, described in what follows, is often used
instead.

The geometrical optics model treats light essentially as particles, or
beams of light, essentially forgetting its wave-like properties. Light is
modeled to travel in straight lines until it encounters a piece of matter.
Upon contact, some of the light gets absorbed, and some of it scatters to
different directions as defined by the properties of the material and the
wavelength of the light.

This particle-like treatment of light leads to a solution that does not
take into account light’s wave-like phenomena such as diffraction and
interference. Some wave effects, such as polarization [75, 34], can be
added back as an extension. This simplification is required for practical
and efficient realistic image synthesis and is usually not a significant
limitation in practice.
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The physical quantity describing the energy carried by a beam of light
is radiance with unit Wsr−1 m−2 and represents radiant power per solid
angle and area of the beam. This models the energy density emitted or
scattered as a beam – a narrow cone in space – from a small area near a
point of study x to a small solid angle around a studied direction ω. It is
this quantity, much like the energy of a photon, which stays constant along
a beam as it travels in space. More technically, the definition of radiance
L(x,ω) at position x to direction ω is

L(x,ω)= ∂2Φ(x,ω)
∂A⊥

ω(x) ∂Ω(ω)
, (2.1)

where ∂2Φ(x,ω) is the radiant power flowing through a small area ∂A⊥
ω(x) or-

thogonal to ω, around point x, to a small solid angle ∂Ω(ω) around direction
ω.

2.2 Rendering Equation

As light beams emitted by light sources interact with objects in the scene,
part of their energy gets absorbed and the rest gets distributed to new
directions. Assuming no subsurface scattering, i.e., no volumetric scattering
inside surfaces such as human skin, this distribution of new directions is
given by a Bidirectional Scattering Distribution Function, BSDF, which
defines the visual appearance of a material.

The newly scattered light will again travel in space towards the new
directions. Assuming no participating media such as smoke or mist, the
light beams travel straight and do not lose energy on their way. As the
light beams hit objects, they scatter again according to the BSDFs. This
combination of traveling and scattering continues ad infinitum, until the
residual energy of the light beams finally approaches zero in the limit.
Assuming no above-mentioned volumetric effects1, this process is described
by the rendering equation [38].

The solution of the rendering equation at the camera sensor defines the
pixel colors of the virtual photographs. The nowadays predominant form
of the equation [32, 70] states that the amount of radiance that leaves a
surface point x to a given direction ω is the sum of emitted radiance and
the radiance that first arrives at x from any direction and then scatters to
direction ω:

Lo(x, ω) = Le(x, ω) +
∫︂

|ωi |=1

L i(x, ωi) f (x, ωi →ωo) |ωi ·N| dωi. (2.2)

Here, Lo is the outgoing radiance, Le is the emitted radiance, L i(x, ωi) is
the radiance arriving at x from direction ωi, N is the surface normal, ωi ·N
1The rendering equation may be extended to volumetric phenomena, but that is
not required for this thesis. See e.g. Pharr et al. [56] for more information.
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converts the incident radiance from area orthogonal to ω to the actual
surface area around x, and the BSDF f tells the ratio of this differential
irradiance that scatters towards direction ωo. The integral sums this over
all incident directions ωi.

The incoming and outgoing radiances L i and Lo are related by a simple
condition on visibility: Since light travels straight in space, the radiance
arriving point x from direction ω is the same radiance that was sent
towards the receiver from the closest scene point in that direction:

L i(x,ω)= Lo(γ(x,ω),−ω). (2.3)

Here x is the receiver location, ω is the direction of study, γ(x,ω) is the ray-
casting function which returns the first intersection with scene geometry
from x towards direction ω, and −ω is the direction from that point back
towards x.

The algebraic solution of this equation system by e.g. the Neumann series
is simple (see e.g. Veach [68]) and agrees with common sense: lighting is
defined by emitted light and its all orders of scattering.

The rendering equation is usually applied per-wavelength, i.e., all radi-
ances and BSDFs above are understood to have an implicit dependency
on a wavelength parameter. This independent treatment of different
wavelengths suffices for modeling most everyday physical effects, but e.g.
fluorescence and phosphorescence require an extension [16].

2.3 Path Tracing

Path Tracing [38] is a direct solution to the rendering equation by Monte
Carlo integration.

In Monte Carlo integration the integral is first written as the expectation
of a random variable, and the expectation is estimated as an average over
a number of random samples. The estimate contains noise but is unbiased,
i.e., its expected value is precisely the value of the integral. The estimate
is also consistent, meaning that the realized error converges towards zero
when more samples are taken.

Uniformly distributed random samples would often result in very noisy
estimates, and hence importance sampling is used: The samples {xi} are
taken from a probability distribution constructed to resemble the integrand
as well as possible, and the Monte Carlo estimate of an integral becomes

∫︂

Ω

f (x) dx ≈ 1
N

N∑︂

i=1

f (xi)
p(xi)

, (2.4)

where p(xi) is the probability density of the random samples {xi}. The
variance of the estimate is at its minimum if p(x) is proportional to f (x) [37].
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While an exact match is usually impossible, closer sampling distributions
tend to lead to less noise.

In realistic image synthesis, the pixel colors of the virtual photograph are
defined by the incoming radiance L i(x,ω) given by the rendering equation.
For a pinhole camera, the parameter x is simply the camera position and ω

is the direction of measurement which depends on the (sub-)pixel location
of the sample: the color of a pixel is acquired by integrating L i over a set
of directions corresponding to the pixel, weighted by a pixel filter. More
realistic camera models also integrate over an aperture but still reduce to
evaluating the incident radiance L i(x,ω).

Path Tracing evaluates L i stochastically, essentially by replacing the
integral over incoming directions in Equation 2.2 by a randomly sampled
direction ωi:

Lo(x, ω) ≈ Le(x, ω) + 1
p(ωi)

L i(x, ωi) f (x, ωi →ωo) |ωi ·N| . (2.5)

Together with Equation 2.3, this leads to a straightforward algorithm:
To evaluate L i(x, ω), trace a ray from x towards ω to find the closest
intersection with the scene geometry in that direction. Evaluating the
outgoing radiance towards the arrival direction by Equation 2.5 gives an
unbiased estimate for L i(x,ω). This algorithm leads to an infinite recursion
for the evaluation of the L i terms, with typically ever-decreasing contri-
butions. The recursion may be terminated probabilistically by Russian
roulette, terminating at each iteration with some probability, and in case
of a non-termination, increasing the weight of the rest of the contributions
correspondingly to retain the correct expected value.

Two main strategies are often used for sampling the directions ωi: BSDF
sampling, i.e., sampling the direction from a distribution mimicking the
shape of the BSDF, and light sampling, i.e., sampling a direction towards
a known emitter in the scene. The two strategies are commonly used
together: one or more light samples are taken towards known emitters, but
the recursion is continued to a direction sampled according to the BSDF.
These samples can be combined with multiple importance sampling [70,
68] which, if the balance heuristic is used, essentially reduces to using
the marginal probability of having sampled the path by any of the used
sampling techniques.

All in all, Path Tracing is a method that samples light paths between
the sensor and the lights by a given unidirectional method. The sampler
provides random paths x with known probability densities p(x), whose
radiances f (x) are evaluated and the contributions f (x) / p(x) are added to
the pixels. This path sampling framework directly generalizes to many
more advanced methods such as Bidirectional Path Tracing [44, 69, 70]
and Metropolis Light Transport [71], whose main difference to Path Trac-
ing is that Bidirectional Path Tracing uses a bidirectional path sampler,
and Metropolis Light Transport uses a Metropolis-Hastings [50, 25] based
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Markov chain path sampler. See Pharr et al. [56] for an excellent introduc-
tion to the topic.

2.4 Bidirectional Path Tracing

Bidirectional Path Tracing [44, 69, 70] is a related method for solving the
rendering equation and is a direct application of a bidirectional path sam-
pler to the previous path sampling framework. It works by simultaneously
sampling sub-paths from the sensor and the lights, and connecting these
paths in all possible ways. The different sampling strategies are combined
with multiple importance sampling.

A unidirectional path sampler often produces very noisy images for
instance in scenes in which important light sources are occluded by lamp-
shades. Such occluders often make the light sampling connections of
unidirectional path tracing to fail, producing a large number of paths with
zero contribution. As the bidirectional sampler constructs its sub-paths
starting from the light sources, many of the sub-paths avoid the occluder
and enter more open areas. The vertices of the sensor-side sub-path can
often be more easily connected to the vertices in the open areas than the
occluded light sources.

The bidirectional sampling strategy thus often increases the probability
of finding paths that carry light from the light sources to the sensor. The
resulting decrease in variance can result in quite dramatically decreased
rendering times, since decreasing the noise level by taking more samples
is very inefficient – each halving of the noise level requires four times
more rendering time. See Veach [68] for an excellent introduction to
Bidirectional Path Tracing.

2.5 Metropolis Light Transport

Metropolis Light Transport (MLT) [71] is a rendering algorithm based on
the same path sampling framework as Path Tracing and Bidirectional Path
Tracing, but it generates paths by the Metropolis-Hastings algorithm [25].
Metropolis-Hastings iteratively mutates a Markov chain random variable,
producing a sequence of correlated states (e.g. light paths) whose probabil-
ity density asymptotically converges to the one defined by a given target
function f (e.g. the amount of light carried by a path):

lim
k→∞

pk (x) = c f (x) , (2.6)

where pk is the probability density of the kth state and c is a normalization
constant. After running for a long time, the states (e.g. paths) will thus be
distributed approximately according to f .
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Disregarding minor details on the handling of color instead of grayscale
images, the histogram of the produced paths converges to a version of
the virtual photograph. The final image is produced by fixing the image
brightness which is often evaluated with Bidirectional Path Tracing.

The algorithm produces paths by randomly mutating the current state X
into a candidate state Y which is accepted as the new state with probability

a(X →Y )=min
(︃

1,
f (Y )K(Y → X )
f (X )K(X →Y )

)︃
, (2.7)

where f is the target function, e.g. the path contribution, and K(X → Y )
is the probability density of suggesting the mutation from X to Y . If
the candidate is not accepted, the previous state is reused. This accep-
tance probability has been carefully chosen to ensure convergence to the
distribution defined by f , with some relatively mild assumptions (see [71]).

The Markov chain will, asymptotically, spend at each path a time propor-
tional to its light contribution. If the chain by chance happens to enter a
hard-to-find area with a high contribution, it will compensate by exploring
that area for a random extended time. While this automatic compensation
helps in exploring hard-to-find modes of light transport, it also leads to
unpredictability since relative brightnesses of different areas in the image
may be wrong even if the image looks otherwise ready.

The original path space Metropolis Light Transport is a rather complex
method due to the numerous details in many of its path mutation strategies.
Primary Sample Space Metropolis Light Transport (PSSMLT) [40] is a
simplified variation which does not directly mutate paths but instead
mutates the random numbers used by e.g. Bidirectional Path Tracing.
Unfortunately, PSSMLT often produces worse results in equal time.

The recent Multiplexed Metropolis Light Transport algorithm [22] and
its follow-up work [6, 54] improve PSSMLT’s exploration of the path space
and may boost its result quality close to path space MLT while retaining
much of the relative simplicity. The primary sample space and path space
methods have also been joined into a hybrid algorithm [54].

2.6 Gradient-Domain Metropolis Light Transport

Gradient-Domain Metropolis Light Transport (G-MLT) [45] is a variant of
Metropolis Light Transport [71] and introduced the concept of gradient-
domain rendering. In addition to sampling the color image like previous
methods, it also evaluates discrete image gradients, that is, finite differ-
ences between adjacent pixels, by constructing pairs of similar paths for
adjacent pixels and subtracting their light contributions. The similarity of
the paths cancels noise in the subtraction and produces improved quality
gradient estimates. The final image is produced by integrating the sampled
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colors and gradients by solving a screened Poisson equation.
The gradients that Gradient-Domain MLT estimates are simply the

differences between adjacent pixels: the gradient at pixel (i, j) is

g i, j =
[︄

I i+1, j − I i, j

I i, j+1 − I i, j

]︄
(2.8)

where I i, j is the color of pixel (i, j). Estimating these gradients efficiently
requires constructing similar paths for nearby pixels and is described in
the following.

The pixel color I i, j can be written, following the area formulation of the
solution of the rendering equation [69, 45], as

I i, j =
∫︂

Ω

hi, j(x) f (x) dµ (2.9)

where the integral is over paths x in the space Ω of all possible paths
that join the lights and the sensor, hi, j is the pixel filter which returns the
path’s weight to pixel (i, j) based on its screen space location, f is the light
contribution function and µ is the product area measure.

The finite difference between pixels i +1 and i (we omit the other di-
mension for brevity) is first written in terms of Equation 2.9, and simple
manipulation leads to a form suitable for direct evaluation (see the expla-
nation below):

I i+1 − I i =
∫︂

Ω

hi+1(y) f (y) dµ −
∫︂

Ω

hi(x) f (x) dµ (2.10)

=
∫︂

T−1(Ω)

hi+1 (T(x)) f (T(x))
⃓⃓
T ′(x)

⃓⃓
dµ −

∫︂

Ω

hi(x) f (x) dµ (2.11)

=
∫︂

Ω

hi(x)
[︁
f (T(x))

⃓⃓
T ′(x)

⃓⃓
− f (x)

]︁
dµ. (2.12)

The offset paths from pixel i+1 are expressed in terms of base paths of
pixel i by the shift mapping y= T(x). This change of integration variable
requires the Jacobian determinant

⃓⃓
T ′(x)

⃓⃓
to compensate for the change

in path density. The shift mapping is assumed to retain the sub-pixel
coordinates of the paths, so hi+1(T(x))= hi(x). Also, for brevity of expression,
the shift mapping is assumed bijective so T−1(Ω) =Ω and Equation 2.12
follows.

This expression allows directly estimating finite differences between pix-
els by sampling random paths x and evaluating their gradient contribution

g(x) = f (T (x))
⃓⃓
T ′(x)

⃓⃓
− f (x). (2.13)

In practice the shift mapping T can usually be made bijective only in a
subset of the path space. The offset paths of non-invertible shifts are
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Figure 2.1. Shift mapping. Gradient-Domain Metropolis Light Transport evaluates
gradients by shifting base paths (green) into similar offset paths (red) in the
adjacent pixels. When the materials are rough, the offset path is constructed
by simply reconnecting the offset path to the base path at the first vertex which
is not determined by the pixel location. Figure from [45]. Republished with
permission of Association for Computing Machinery; Permission conveyed
through Copyright Clearance Center, Inc.

treated as non-existent, i.e., f (T(x))= 0. The gradients are sampled in both
ways, from pixel i to pixel i+1 and from pixel i+1 to pixel i. The samples in
both directions are weighted appropriately to count each path pair exactly
once. See Publication PI, Hua and Gruson et al. [30] or Lehtinen et al. [45]
for details.

The primal-domain Metropolis Light Transport method runs a Metropolis-
Hastings Markov chain in the space of light paths to directly evaluate
the pixel integrals (Equation 2.9). Gradient-Domain Metropolis Light
Transport uses similar machinery to evaluate the gradient integrals (Equa-
tion 2.12). While the primal-domain method drives the Markov chain with
the light contribution function f , gradients are sparse in the path space
and driving the chain with the gradient contribution function g (Equation
2.13) would make the chain to often get stuck. To facilitate easier exploring,
G-MLT drives the chain with a mix of gradient and color magnitudes. As a
result of this, the color and gradient images are no longer mere histograms
of the Markov chain, but the samples need to be weighted by the ratio
of the color or gradient contributions and the target function driving the
Markov chain. These weighted contributions converge to the color and
gradient images.

The gradient contribution function g(x) (Equation 2.13) requires shifting
paths from the base pixel to similar paths in the adjacent offset pixels by
the shift mapping T. At simplest this can be easy: the offset path, whose
screen space location has been changed by one pixel, can reconnect back to
the base path immediately after the first vertex which is determined by
the pixel location – all other vertices can stay the same (Figure 2.1). This
strategy makes sense when the materials in question are rough (diffuse),
but does not work for specular surfaces like ideal mirrors, as this shifting
strategy modifies the reflection angles. To remedy this, the shift mapping
in G-MLT tries to preserve specular chains, i.e., consecutive ideal reflection
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or refraction angles, when dealing with very glossy materials. This is done
with the manifold perturbation technique [33] which essentially amounts
to applying Newton’s method to fulfill the constraints of ideal reflection for
the offset path.

After sampling the colors and gradients, G-MLT reconstructs the final
image by solving a screened Poisson equation. This essentially happens by
writing a system of equations: the colors of the result image should match
the measured colors, and the gradients of the result image should match
the measured gradients. This system of equations is overdetermined
and has no exact solution, but a solution which minimizes a loss, e.g.
mean-squared error (L2) or absolute deviation (L1), is used instead. More
technically, the final image is defined as

I = argmin
x

∥α(x− c)∥p
p +∥∇x− g∥p

p (2.14)

where x is a candidate image, c and g are the measured noisy colors and
gradients, α determines the relative weight of the colors versus gradients,
∇ evaluates the discrete image gradients, i.e. the horizontal and vertical
differences, and p is the order of the norm. The L2 solution is unbiased,
but the L1 solution often produces more visually pleasing results.

Publications PI and PII extend gradient-domain rendering from Markov
Chain Monte Carlo to standard Monte Carlo and analyze more closely why
gradient-domain rendering is beneficial also in this context. The reader
is referred to the recent survey by Hua and Gruson et al. [30] for a more
encompassing introduction to gradient-domain rendering.

2.7 Neural Networks

Before delving into reconstruction and denoising, let us briefly sidestep
to supervised learning via artificial neural networks, a machine learning
technique to produce a mapping from inputs to outputs by learning from
examples.

Essentially, a neural network is a parametric function f (x;Θ) constructed
recursively from simple building blocks. In supervised learning the pur-
pose is to learn the mapping from inputs to outputs from data, a collected
set of examples {xi} which need to map to targets {yi}. The neural net-
work f is then taught by optimizing the parameters Θ to minimize a loss
L ( f (xi,Θ), yi), e.g. the mean squared error, over a dataset by a stochastic op-
timization method such as Stochastic Gradient Descent [57] or Adam [42].

The basic building blocks of neural networks are matrix products, adding
constants (bias terms), and activation functions such as rectified linear
units, ReLU(x)=max(x,0). Activation functions make it possible to present
nonlinear behavior: without them, a combination of matrix products and
biases would still be an affine model with limited expression power.
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When working with images, the matrix multiplications are often re-
stricted to implement convolutions instead of general products: for ex-
ample, a single densely stored matrix product for an image of resolution
1000×1000 would require a matrix of size 106×106 which is of course infea-
sible. The convolutional structure only requires storing the kernel weights,
makes the model applicable to images of different sizes, and also encodes
the often useful idea that the pixels of an image should, perhaps with the
exception of edges, often be treated rather similarly.

Images often consist of red, green and blue channels which can be thought
of as three scalar images. The internal layers of a neural network often
consist of hundreds of such channels, often called features in the neural
network context.

The common convolutional layer building block produces a multi-channel
image by applying a sequence of convolutions to the channels of the input
image. More precisely, each channel of the output image has a separate
convolution kernel for each of the input image’s channels. Adding up the
convolution results over the input channels produces the output image’s
channel. For example, a 3×3 convolution which maps an image from 5 to
20 channels would thus consist of 3×3×5×20= 900 scalar parameters.

2.8 U-Net

The combination of convolutional layers, biases, ReLUs, and downsampling
and upsampling layers results in powerful neural network architectures
such as U-Net [58]. The U-Net architecture, which maps images to images,
was originally used in biomedical image segmentation but has since become
a common starting point for many applications.

The U-Net processes the image with a large number of convolutional
layers in different resolutions. The use of multiple resolutions makes it
easier for the network to study patterns on multiple scales.

In the first half of execution U-Net repeatedly processes the image with
convolutional layers and downsamples the result to half-resolution. In the
second half, it upsamples the results back and further processes them with
more convolutional layers.

In addition, it stores the results right before each downsampling and
adds them back as extra channels (features) to supplement the upsampled
half-resolution results. These skip connections make the neural network’s
task easier as it does not need to transmit all useful data through the
downsampled layers.

Convolutional neural networks are an important tool for many modern
denoising and reconstruction methods. Publication PIV also uses a novel
network architecture based on the ideas of U-Net and Densely Connected
Convolutional Networks [31]. The reader is referred to Goodfellow et
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al. [17] and Oshea and Nash [53] for a more encompassing introduction to
convolutional neural networks.

2.9 Reconstruction and Denoising

In the realistic image synthesis context, reconstruction is the process of
building the final virtual photograph from the samples. The traditional
method for reconstruction consists merely of averaging the color samples
in each pixel. Gradient-domain rendering reconstructs the final image by
solving a screened Poisson equation.

Denoising is the process of removing noise from an existing image, and
it is a subset of reconstruction. Although many methods exist to remove
noise – such as projection to a truncated SVD basis [76] – the most evident
way of removing noise is blurring. Blurring, like other methods, however
causes loss of detail if done carelessly, and thus context-aware methods
like the bilateral [66] and non-local means filters [8] are often used. They
attempt to avoid loss of detail by carefully selecting which pixels to average
over. In other words, the methods use heuristics on pixel similarity to
predict a separate smoothing kernel – weights for a weighted average – for
each pixel in the image.

The bilateral filter [66] replaces the color of each pixel by a weighted
average of its nearby pixels. The weights are typically evaluated as a
product of Gaussians of the pixel distance and color difference. If also
other images are used for cues on expected pixel similarity, the filter is
called cross-bilateral. Xu et al. [77] use a slightly modified bilateral filter
for denoising Monte Carlo renderings.

The non-local means filter [8] is a variation of the bilateral filter. Unlike
the bilateral filter, the non-local means filter replaces a pixel’s color by an
average over pixels whose neighborhoods are similar to the current pixel’s
neighborhood, with no limitation on pixel location. Rousselle et al. [61]
build on the non-local means filter for denoising Monte Carlo renderings.

The denoising process can be helped by utilizing auxiliary information
such as albedo, surface normal and depth of the first scene intersection
behind the pixels (Figure 2.2). This data can be collected during sampling
for almost no extra cost and can help in identifying which pixels should
have similar colors. However, for example shadows cannot be inferred
from the typical auxiliary buffers, and as such many denoisers tend to
reconstruct them less accurately than many other effects.

The auxiliary buffers are widely used in denoising Monte Carlo render-
ings. For instance, Li et al. [47] and Rousselle et al. [62] use the auxiliary
features with a combination of non-local means, cross-bilateral filtering,
and Stein’s Unbiased Risk Estimate [64] to denoise Monte Carlo render-
ings. Bitterli et al. [7] combine non-local means with first-order regression,
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and Moon et al. [51] use the auxiliary buffers with polynomial regression
of varying order.

Neural networks have also recently gained much popularity in Monte
Carlo denoising due to their tendency to produce excellent results. For
instance, Kalantari et al. [39] use neural networks to estimate parameters
for the cross-bilateral filter, Bako et al. [2] use a convolutional neural
network to directly predict the smoothing kernel for each pixel, and Vogels
et al. [72] further improve the kernel prediction method of Bako et al. and
extend it to animations. Chaitanya et al. [10] use the U-Net architecture
with recurrent connections to denoise very low sample count animation
rendering.

Many denoisers efficiently remove high-frequency noise from images.
However, the images are typically left with some amount of slowly varying
low-frequency noise. Different low-frequency noise patterns in consecutive
frames of an animation may result in distracting flickering. This problem
can be alleviated by cross-frame reconstruction, i.e., using the data of
multiple animation frames to reconstruct each animation frame. Typical
solutions use motion vectors to track the motion of objects between succes-
sive animation frames in pixel-space [28, 78, 72]. The link established by
the motion vectors allows extending the smoothing kernels to encompass
several frames.

The reader is referred to e.g. Zwicker et al. [79] for more information on
denoising and reconstruction.

2.10 Summary

The transportation of light in a virtual environment is described by the
rendering equation. The rendering equation is often solved by Monte
Carlo methods such as Path Tracing and Bidirectional Path Tracing, which

Color Albedo Depth Normal

Figure 2.2. Auxiliary inputs. Example of a Monte Carlo sampled image (“Color”) and
the albedo, depth and normal auxiliary inputs which are often used to guide
in the reconstruction.
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estimate the pixel colors by sampling random paths that connect the lights
to the sensor.

Lehtinen et al. [45] presented gradient-domain rendering in the Markov
Chain Monte Carlo context. They supplement the standard color samples
by directly evaluating image gradients. They then reconstruct the final
image from the color and gradient samples by solving a screened Poisson
equation.

The objective of this thesis is to study the uncharted intersection of
gradient-domain rendering and standard Monte Carlo methods. The indi-
vidual research questions were presented in Section 1.4, and each question
is answered by a separate publication. The following chapter presents the
most important results from the publications.
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Answering the research questions in Section 1.4 led to many interesting
findings: an improved understanding of gradient-domain rendering and
why it is beneficial, several new gradient-domain Monte Carlo rendering
methods for realistic image synthesis, and a machine learning based re-
construction for gradient-domain rendering. This chapter summarizes the
most important results from the publications.

3.1 Gradient-Domain Path Tracing

Publication PI formulates a gradient-domain adaptation of the de facto
industry standard Path Tracing [38] rendering algorithm. The big picture
of the new method is quite similar to Gradient-Domain Metropolis Light
Transport: The method samples base paths by Path Tracing and evaluates
a standard color image with them. The base paths are also shifted into
offset paths in the adjacent pixels to evaluate gradients. The colors and
gradients are joined into a final image by solving a screened Poisson
equation.

The most important distinction between the two methods is, of course,
that in the new method base paths are sampled by Path Tracing, not by a
Markov chain. A sample produced by Path Tracing consists of recursively
constructed paths that share the same beginning and essentially form
a tree. Each vertex in the tree defines a path that needs to be shifted.
Shifting the whole tree with the manifold perturbation shift of G-MLT
(Section 2.6) would be very inefficient. Gradient-Domain Path Tracing
(G-PT) uses a novel shift mapping based on local decisions, which allows
shifting of the whole tree of paths by visiting each vertex only once.

The new shift mapping uses the reconnection shift from G-MLT for the
simple case (Figure 2.1), but handles specular materials by copying the
half-vector (the surface normal that would transform between the incoming
and outgoing directions in ideal reflection or refraction) from the base path
to the offset path. The new offset direction is generated from the half-vector

43



Publication Summaries

Signal
Noise

Final Image
ω

Colors

Gradients
ω

ω
Low Pass

ω

High Pass
ω

Screened Poisson

∑︁

Figure 3.1. Frequency-domain analysis of gradient-domain rendering. Gradients
(top left) capture the high frequencies of the image with little error but do not
contain much useful information about the low frequencies (notice the noise
singularity near the zero frequency). The standard color samples (bottom left)
capture all frequencies uniformly well but are not as effective for the high
frequencies. The screened Poisson reconstruction implicitly filters out the
noisy low frequencies from the integrated gradients (top middle) and the noisy
high frequencies from the color samples (bottom middle) and sums the filtered
signals to form an image with less error than either of the inputs.

by applying the ideal reflection or refraction to the offset path.
The reason why gradient-rendering rendering is beneficial also in the

traditional Monte Carlo context can be approximately simplified into the
following: Most energy in natural images is concentrated to the low fre-
quencies which are strongly suppressed by the (discrete) gradients. Since
Monte Carlo noise is relative to the signal’s total energy, the sampled
gradients typically have much less noise than the color samples. Integrat-
ing the image from only the gradients would result in a high amount of
low-frequency error, but the screened Poisson reconstruction takes the low
frequencies from the sampled colors and the high frequencies from the
gradients, essentially taking the best of both worlds. See Figure 3.1.

The test scenes suggest a typical five- to twelve-fold improvement in
rendering time compared to standard Path Tracing. However, there are
also cases for which Gradient-Domain Path Tracing does not work very
well: sub-pixel scale geometric detail is not well captured by the one-
pixel finite differences, and some complex materials may not obey the
assumptions behind the shift mapping. See Figure 3.2. Both cases result in
magnified noise in the unbiased gradients, which increases reconstruction
error. Problematic cases may include for example hair, fur, and dense
foliage.
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image image

Successful Case Failure Case

base path
offset path

Figure 3.2. Subpixel-scale geometric detail. Left: A small amount of subpixel-scale
geometric detail does not prevent constructing useful offset paths. Right: Too
much subpixel-scale detail may break the correlation between the base and
offset paths. Here the shift is inefficient for two reasons: The offset path is
occluded, and the very different surface orientations at the first intersections
may cause differences in the BSDF and the dot product in Equation 2.2. The
Jacobian determinant of the shift in Equation 2.13 could also become very
large or very small.

3.2 Gradient-Domain Bidirectional Path Tracing

The unidirectional sampling method of Path Tracing is not always efficient
at finding the relevant light paths that contribute to the image. In complex
scenes this may result in very slowly vanishing noise and impractically
long rendering times. Gradient-Domain Path Tracing uses the path sam-
pler from Path Tracing and inherits the problem. The more advanced
path sampler of Bidirectional Path Tracing [44, 69, 70] often produces
significantly less noise, and a bidirectional adaptation of Gradient-Domain
Path Tracing would often be useful. Publication PII presents the Gradient-
Domain Bidirectional Path Tracing (G-BDPT) algorithm.

Gradient-Domain Bidirectional Path Tracing differs from the unidirec-
tional method in two ways: the bidirectional path sampler, and the corre-
sponding shift mapping. The frequency analysis of the previous publication
still holds.

Bidirectional Path Tracing works by sampling a sub-path from the sensor
and a sub-path from a light and connecting these sub-paths in all possible
ways. The key insight in Gradient-Domain Bidirectional Path Tracing is
that discarding connections with a very glossy vertex on either side only
very slightly increases per-sample variance, but allows an efficient shifting
strategy which shifts each vertex only once – even with the original shift
mapping from Gradient-Domain Metropolis Light Transport.

The new method brings the benefits of Gradient-Domain Path Tracing
to scenes which require the bidirectional sampler for good convergence.
A typical case is when the scene is mostly lit indirectly and most light
sampling connections to the light sources fail.
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3.3 Temporal Gradient-Domain Path Tracing

While the previous Monte Carlo gradient-domain methods often signifi-
cantly reduce rendering time of still images compared to standard Path
Tracing, the images retain similar low-frequency noise. While this noise is
hard to notice in still images, in animation it displays as flickering. Publi-
cation PIII extends the gradient computation to the time dimension and
reconstructs the animation by solving a three-dimensional spatiotemporal
screened Poisson equation. This significantly reduces the flickering and
shortens the rendering time to equivalent quality.

The time-components of the gradients are evaluated by a method of ran-
dom seed sharing: Each frame is rendered in two buckets, with the first
bucket sharing the random seeds with the previous frame, and the second
bucket sharing the random seeds with the next frame. More precisely, de-
noting by I(k, s) the frame k rendered with seed s, the frame k is rendered
in buckets I(k, k) and I(k, k+1), and the temporal difference is given by
I(k+1, k+1)− I(k, k+1). A temporal shift mapping based on random seed
sharing enables independent rendering of the video frames. Subtracting
the colors of the corresponding pixels in the successive frames, evaluated
with exactly the same random seeds, then provides the time-component of
the gradient.

The two-dimensional screened Poisson reconstruction removes much of
the spatial high-frequency noise from the image compared to the input col-
ors. Similarly, the spatiotemporal screened Poisson reconstruction removes
much of the temporal high-frequency noise, flickering.

The publication further improves the rendering quality in two ways.
First, it shows that adaptive sampling for gradient-domain rendering
should distribute samples according to the variance of the gradient samples
instead of the color samples. Second, it shows that it is beneficial to
evaluate the time-dimension component of the gradients by following the
motion vectors which track the objects as they move between frames.

3.4 Deep Convolutional Reconstruction for Gradient-Domain
Rendering

While Gradient-Domain Path Tracing often produces improved quality
compared to equal-time Path Tracing, modern denoising methods applied
to the outputs of Path Tracing have typically achieved even better quality
in equal time. Denoising methods exploit the heuristic correlations of the
unknown ground-truth image and the auxiliary buffers such as albedo,
depth and normals which are captured for free during the sampling. The
screened Poisson reconstruction used by earlier gradient-domain rendering
methods does not make use of this data.
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Publication PIV replaces the screened Poisson reconstruction by a method
similar to modern-day denoising. More specifically, it presents a novel deep
convolutional neural network trained to map the sampled colors, gradients,
and auxiliary buffers to estimates of the ground-truth image.

The new reconstruction method usually produces much cleaner images
than the screened Poisson reconstruction. It also does not result in energy
loss for low sample counts like the L1 screened Poisson reconstruction.
However, similarly to the screened Poisson solver, high variance of the
gradients samples e.g. due to sub-pixel scale geometric detail or some
complex materials may hurt reconstruction quality.

The novel reconstruction method also typically improves over primal-
domain methods used with denoisers, especially in the lower sample count
regime. The improvement is most prominent in shadows, since shadows
are not captured by the usual auxiliary buffers, but shadow edges and
penumbra are captured by the gradient samples.

The publication also presents a novel neural network architecture which
results in a small but consistent improvement over the standard U-Net [58]
architecture. The network is trained with the neural perceptual image
similarity metric E-LPIPS [41] which tends to result in slighty sharper
and more natural images than the classic L1 loss. The increased sharpness
may, however, sometimes be undesired if the image is actually supposed to
look blurry e.g. due to a strong depth of field effect. In this case it might be
preferable to train the network with the L1 loss.

3.5 Summary

The publications in this thesis resulted in many general purpose render-
ing methods that are often faster than earlier methods. The publications
extend the theory and understanding of gradient-domain rendering and
demonstrate that it is a widely applicable, general-purpose paradigm for
realistic image synthesis in the path sampling context. The first publica-
tion shows that gradient-domain rendering is beneficial also with standard
Monte Carlo, and the other publications extend it to animation, improved
reconstruction and improved sampling, thereby advancing the state of the
art in realistic image synthesis.

Perhaps most interestingly, however, the publications show that the pre-
viously uncharted intersection of gradient-domain rendering and standard
Monte Carlo is rich in interesting theory and applications.

The publications have already led to additional research which is sum-
marized in the next chapter. The next chapter also further discusses the
scientific and practical implications of the publications and lists ideas for
future work.
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This chapter discusses the nature of gradient-domain rendering, its scien-
tific and practical significance, reliability of the conducted research and
future research topics in gradient-domain rendering.

4.1 Gradient-Domain Rendering as Path Space Denoising

The relationship between gradient-domain reconstruction and image-space
denoising is a relatively common topic in discussions. Both are reconstruc-
tion methods and share the same goal: to produce an image with little
noise. Both classes result in images with decreased high-frequency error,
while the low-frequency error is harder to remove. Image-space denoisers
often remove noise by heuristics on which pixels to average over, while
gradient-domain reconstruction can resort to unbiased estimates of pixel
differences.

The usefulness of gradient-domain rendering stems from the ability to
construct correlated path pairs for nearby pixels. Much of the noise of
these individual samples cancels out in the finite difference due to the cor-
relation. Nothing would be gained by gradient-domain rendering without
this correlation, e.g. by using independent samples. It is thus possible to
say that gradient-domain rendering is based on noise cancellation already
in path space.

This argument can be extended to temporal reconstruction for animation:
while traditional cross-frame denoising methods extend smoothing kernels
to multiple frames, temporal gradient-domain rendering obtains unbiased
cross-frame finite differences.

However, one does not need to choose between noise cancellation in path
space and image-space denoising. Publication PIV shows that it is often
beneficial to use them together.
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4.2 Recent Research by Others

The publications in this thesis demonstrate that gradient-domain render-
ing is a general-purpose rendering paradigm that is useful also in the more
common traditional Monte Carlo context. Following this observation, many
researchers have since continued the work on gradient-domain rendering,
with most publications primarily targeting the newly enabled traditional
Monte Carlo context.

Hua et al. [29] extend photon density estimation methods, e.g. [21, 43]
to gradient-domain, and Gruson et al. [19] extend gradient-domain photon
density estimation to participating media. Sun et al. [65] merge gradient-
domain photon density estimation into a hybrid framework with gradient-
domain path sampling. Petitjean et al. [55] use gradient-domain rendering
in the wavelength dimension to reconstruct the spectrum of incident radi-
ance for image pixels. Bauszat et al. [3] improve Path Reusing [5] by the
half-vector shift from Publication PI and hide distracting pattern artifacts
by transforming the method into gradient-domain.

Manzi et al. [49] regularize the screened Poisson reconstruction by a soft
constraint that the final image is locally representable as linear combi-
nations of the auxiliary buffers. Rousselle et al. [59] formulate gradient-
domain reconstruction with control variates and propose an improved
reconstruction method. Back et al. [1] use bootstrap aggregation and in-
verse variance weighted Poisson reconstruction from the gradient samples
to approximate an ideal feature for local regression based reconstruction.
Ha et al. [20] identify probable gradient outliers by a heuristic based on
non-local means filtering, and remove the corresponding constraints from
the screened Poisson reconstruction.

The recent survey by Hua and Gruson et al. [30] provides an excellent
in-depth introduction to gradient-domain rendering and many of the recent
advances described above.

Much of the recent gradient-domain rendering research transforms ex-
isting image synthesis methods into gradient-domain, improves the re-
construction from gradients and colors, or extends the scope of gradient-
domain rendering in some other way. These improvements are important
also for the adoption of gradient-domain rendering in production environ-
ments, but some challenges remain.

4.3 Recommendations for Future Research

Many production renderers cover large numbers of techniques for different
purposes and consist of large codebases. Adapting such large renderers to a
new rendering paradigm can be a challenging task. To ease in the adoption
of gradient-domain rendering in existing renderers, the gradient-domain
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rendering component should likely be made somewhat separated from
the existing code. For instance, instead of modifying the path tracer to
evaluate gradients on the fly, the path tracer could store its paths as a
tree and give the tree to a gradient-domain component for processing. The
gradient-domain component would then shift the tree while reusing exist-
ing computation as much as possible and evaluate the gradients. While
this might be a good starting point, many questions remain unanswered.

The following treatment outlines some of the most important challenges
and open questions in gradient-domain rendering from the perspective
of practical use. The treatment follows a rough order of urgency – not
necessarily importance – as decided by the author.

4.3.1 Volumetric Gradient-Domain Path Tracing

One of the more challenging tasks in adapting a production path tracer
to gradient-domain is related to designing an efficient shift mapping for
volumes, especially heterogeneous participating media. Gruson et al. [19]
extend gradient-domain rendering to homogenous participating media
by volumetric photon density estimation. They also present results for
volumetric gradient-domain path tracing in homogenous media. Hua and
Gruson et al. [30] report in their survey about promising initial results for
gradient-domain path tracing in heterogeneous participating media, but
do not present a full algorithm. An extension of Gradient-Domain Path
Tracing to heterogeneous participating media would be very important
since it is a common element in many production scenes.

4.3.2 Color – Gradient Adaptive Sampling

Gradients might not be efficient in some pixels that for example contain
dense fur or foliage, but might be efficient on others. A robust rendering
system should autodetect on which pixels gradients are worth the effort,
and enable or disable gradient computation accordingly. The reconstruction
should produce a very similar noise pattern for all pixels regardless of the
ratio of color and gradient samples. Optimally, the reconstruction should
guide the sampler on optimal placement of color and gradient samples.

This kind of a renderer would make it much easier to approach gradient-
domain rendering, as even a partial implementation might provide concrete
benefits.

4.3.3 Temporal Reconstruction

Gradient-domain rendering, like single-frame denoising, often removes a
large amount of high-frequency noise from the image. The low-frequency
noise remains and may result in flickering in animation. Publication PIII
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extends gradient-domain rendering to cross-frame reconstruction by in-
troducing temporal gradients – without requiring the renderer to keep
multiple frames in memory at once.

Publication PIV presents a new machine learning based reconstruction
method for gradient-domain rendering. This method should be extended
to cross-frame reconstruction to output flicker-free animations. Possible
directions include utilizing temporal gradients and/or reprojection methods
like Vogels et al. [72].

4.3.4 Simple Shift Mappings

Hua and Gruson et al. [30] suggest in their survey a simple shift mapping
based on a combination of random number replay and the reconnection
shift. They report that this shift mapping often produces comparable
results to the somewhat more complicated half-vector shift from Publica-
tion PI. The simplicity and generality of this simple shift mapping could
make the adoption of gradient-domain rendering to production renderers
more alluring, especially if the method can be extended to work well with
heterogeneous participating media. This approach, however, still relies on
knowing when to apply the reconnection shift, which is discussed in the
following.

4.3.5 Vertex Classification

Contemporary gradient-domain rendering methods require the classifica-
tion of vertices into connectable and non-connectable, often by comparing
the roughness of the material against a threshold. This information is
used for choosing the shift mapping. However, materials are often mod-
eled with layers, and may not have a single roughness parameter that
could satisfactorily be used. Roughness can also be direction-dependent,
and programmable materials present another complication. A more sat-
isfactory way of choosing the shift mapping would make the adoption of
gradient-domain rendering easier.

As a partial solution, the roughness threshold can be made probabilistic,
as long as the used random numbers can be treated as constants selected
before sampling the path. The shift mapping also needs to be reversible1

with each value of the constant.

4.3.6 Combining Shift Mappings

In some cases, it is unclear which shift mapping should be used. In these
cases, the shift mapping can be chosen randomly with the same conditions

1If path x maps to path y when shifting right, then path y needs to map to path x
when shifting left.
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as in Section 4.3.5.
It would be good to be able to combine the different shift mappings by

giving them weights that sum to one like in multiple importance sampling.
One idea is to output the unbiased results of the different shift mappings
into separate buffers and combine them with inverse-variance weighting.

4.3.7 Generic Shift Mappings

Contemporary shift mappings are based on invariant properties of the
paths: The reconnection shift keeps the reconnection vertex invariant,
the half-vector shift keeps the half-vector invariant, and random number
replay keeps the random numbers that define the path invariant. These
invariants make the shifts reversible, as all critical information is stored
and retained in both paths. Is there a more generic principle, or perhaps
another invariant, that would replace the need for case-specific heuristics?
One interesting idea is to somehow use the gradient of the path contribu-
tion, perhaps evaluated in a half-vector parametrization which encodes
that materials often approximately follow the law of ideal reflection. One
of the challenges is that the gradient does not stay invariant in this shift,
and something else is required to make the shift reversible.

4.3.8 Path Guiding

Path guiding methods, e.g. [74, 26, 52, 27], train the path importance sam-
pler on the fly and are becoming increasingly common in today’s production
renderers [73]. They often provide a significant variance reduction in equal
time. Path guiding could probably be used to provide better gradient
samples.

4.3.9 Kernel Prediction

Many primal-domain denoisers such as Bako et al. [2] and Vogels et al. [72]
use the color and auxiliary buffers to predict an averaging kernel for each
pixel. The gradient-domain reconstruction presented in Publication PIV
does a direct prediction: the network directly outputs a new color for each
pixel based on the input colors, gradients, and auxiliary buffers. Extending
kernel prediction to gradient-domain rendering might provide some bene-
fits. The kernels should give weights to the gradient data in addition to
the primal colors since the gradients contain unbiased information which
is not present in the color buffer.
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4.3.10 Sample-Based Reconstruction

Instead of working with averaged samples in image-space, Gharbi et
al. [15] use a neural network to reconstruct an image directly from the
individual color samples by predicting a splatting kernel for each sample.
This approach could benefit from an extension to include gradients.

4.4 Practical Implications

The publications in this thesis present methods that often speed up realistic
image synthesis. The previous section describes some of the remaining
challenges in implementing Monte Carlo gradient-domain rendering in
contemporary production renderers. A successful implementation could
potentially result in significantly shorter rendering times in many scenes.

Movie and advertisement companies use realistic image synthesis for
animations, which requires the synthesis of a large number of animation
frames, often by supercomputers. Shorter rendering times could allow
faster production or more iterations on the content by content artists. The
presented rendering methods could potentially also advance the feasibility
of rendering to slightly more complex scenes. Alternatively, the shorter
rendering times could lead to electricity savings in the rendering cluster.

Following an implementation in a widely used renderer, e.g. product
design and architecture companies could benefit from faster depictions of
products and buildings. This could allow more iterations, and in some cases
lead to improved design decisions. Somewhat more realistic visualizations
of future buildings and infrastructure projects might also become feasible.

4.5 Reliability and Validity

The following sections of the thesis describe the details of the novel methods
in the form of peer-reviewed scientific publications.

The research methods in the publications follow standard scientific prac-
tices of the field. The results seem consistent and agree with our theoretical
understanding. All publications in this thesis have gone through rigorous
peer review processes, and any known inaccuracies or confusions have
been corrected.

The empirical tests in the publications use the same publicly available
test scenes that are used by the vast majority of realistic image synthesis
research. The scenes are technically challenging for various reasons, and
although not as filled in detail as some industrial-grade scenes, they are
quite representative of many of the challenges present.

The consistent success of the presented methods speaks for the generality
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of the results. Gradient-domain rendering in the Monte Carlo context
seems to do well for many kinds of applications, but it also has some
limitations which are more closely explained in the publications. Such
problematic cases, e.g. large amounts of sub-pixel scale geometric detail
and some complex materials, might be better rendered without gradients.

A robust rendering system (Section 4.3.2) should select the appropriate
sampling method for each pixel and get the best of both worlds. This
way the renderer could fall back to primal-domain when there is little
correlation in the light transport between adjacent pixels, and benefit from
gradient-domain rendering when it is most useful.
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Errata

Publication I

The results and comparisons use a slightly different formula for

relative MSE than described in Section 6: the errors are averaged

over color channels instead of summing and the formula uses epsilon

0.01 instead of 0.001.

63



lautriv gnikool-citsilaer fo noitaerc eht ,si taht ,sisehtnys egami citsilaeR  

fo noitalumis lanoitatupmoc yb stnemnorivne lautriv fo shpargotohp  

seivom fo mrof eht ni elpoep tsom fo sevil yliad eht ni tneserp si ,thgil  

gnizisehtnys rof sdohtem wen ruof stneserp siseht sihT .gnisitrevda dna  

-tneidarg eht ni krow sdohtem levon ehT .shpargotohp lautriv hcus

yltcerid sdohtem eht ,sroloc lexip gnilpmas ot noitidda nI :niamod  

eht tcurtsnocer dna slexip tnecajda neewteb secnereffid etinfi etaulave  

ot dael yam sdohtem detneserp ehT .melborp noitargetni na sa egami  

rellams dna ,ytilauq egami devorpmi ,stsoc noitcudorp repaehc  

 .tnirptoof latnemnorivne

-o
tl

a
A

D
D

 5
/

 0
2

0
2

 +c
haji

a*GM
FTSH

9

 NBSI 2-7098-06-259-879  )detnirp( 

 NBSI 9-8098-06-259-879  )fdp( 

 NSSI 4394-9971  )detnirp( 

 NSSI 2494-9971  )fdp( 

 

ytisrevinU otlaA  

ecneicS fo loohcS  

ecneicS retupmoC fo tnemtrapeD  

 fi.otlaa.www

 + SSENISUB
 YMONOCE

 
 + TRA

 + NGISED
 ERUTCETIHCRA

 
 + ECNEICS

 YGOLONHCET
 

 REVOSSORC
 

 LAROTCOD
 SNOITATRESSID

 n
e

n
ut

te
K 

s
uk

ra
M

 s
is

eh
t

ny
S 

e
ga

mI
 c

it
sil

a
e

R 
r

of
 s

d
oh

te
M 

ni
a

m
o

D-
t

n
ei

da
r

G
 y

ti
sr

ev
i

n
U 

otl
a

A

 0202

 ecneicS retupmoC fo tnemtrapeD

sdohteM niamoD-tneidarG  
egamI citsilaeR rof  

 sisehtnyS

 nenutteK sukraM

 LAROTCOD
 SNOITATRESSID


	Aalto_DD_2020_005_Kettunen_verkko_korjattu
	302836_Aalto_DD_2020_5_Kettunen_vedoskansi
	Aalto_DD_2020_005_Kettunen_verkko_korjattu.pdf
	302836_Aalto_DD_2020_5_Kettunen_sisus
	Vaitoskirja_Alkusivut_D-Aalto-0C26B881
	302836_Kettunen_sisus






